论文
Functional balance between enzymes in malonyl-CoA pathway for 3-hydroxypropionate biosynthesis
发表年度: 2016
卷: 34
页: 104-111
摘要: 3-Hydroxypropionate (3HP) is an important platform chemical, and four 3HP biosynthetic routes were reported, in which the malonyl-CoA pathway has some expected advantages but presented the lowest 3HP yield. Here, we demonstrated that this low yield was caused by a serious functional imbalance between MCR-C and MCR-N proteins, responsible for the two-step reduction of malonyl-CoA to 3HP. Then we minimized the enzyme activity imbalance by directed evolution of rate-limiting enzyme MCR-C and fine tuning of MCR-N expression level. Combined with culture conditions optimization, our engineering approaches increased the 3HP titer 270-fold, from 0.15 g/L to 40.6 g/L, representing the highest 3HP production via malonyl-CoA pathway so far. This study not only significantly improved the 3HP productivity of recombinant Escherichia coli strain, but also proved the importance of metabolic balance in a multistep biosynthetic pathway, which should be always considered in any metabolic engineering study. (C) 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
刊物名称: METABOLIC ENGINEERING
影响因子: 7.808