论文
Engineering a natural Saccharomyces cerevisiae strain for ethanol production from inulin by consolidated bioprocessing
发表年度: 2016
卷: 9
页: -
摘要: Background: The yeast Saccharomyces cerevisiae is an important eukaryotic workhorse in traditional and modern biotechnology. At present, only a few S. cerevisiae strains have been extensively used as engineering hosts. Recently, an astonishing genotypic and phenotypic diversity of S. cerevisiae was disclosed in natural populations. We suppose that some natural strains can be recruited as superior host candidates in bioengineering. This study engineered a natural S. cerevisiae strain with advantages in inulin utilization to produce ethanol from inulin resources by consolidated bioprocess. Rational engineering strategies were employed, including secretive co-expression of heterologous exo-and endo-inulinases, repression of a protease, and switch between haploid and diploid strains. Results: Results from co-expressing endo-and exo-inulinase genes showed that the extracellular inulinase activity increased 20 to 30-fold in engineered S. cerevisiae strains. Repression of the protease PEP4 influenced cell physiology in late stationary phase. Comparison between haploid and diploid engineered strains indicated that diploid strains were superior to haploid strains in ethanol production albeit not in production and secretion of inulinases. Ethanol fermentation from both inulin and Jerusalem artichoke tuber powder was dramatically improved in most engineered strains. Ethanol yield achieved in the ultimate diploid strain JZD-InuMKCP was close to the theoretical maximum. Productivity achieved in the strain JZD-InuMKCP reached to 2.44 and 3.13 g/L/h in fermentation from 200 g/L inulin and 250 g/L raw Jerusalem artichoke tuber powder, respectively. To our knowledge, these are the highest productivities reported up to now in ethanol fermentation from inulin resources. Conclusions: Although model S. cerevisiae strains are preferentially used as hosts in bioengineering, some natural strains do have specific excellent properties. This study successfully engineered a natural S. cerevisiae strain for efficient ethanol production from inulin resources by consolidated bioprocess, which indicated the feasibility of natural strains used as bioengineering hosts. This study also presented different properties in enzyme secretion and ethanol fermentation between haploid and diploid engineering strains. These findings provided guidelines for host selection in bioengineering.
刊物名称: BIOTECHNOLOGY FOR BIOFUELS
影响因子: 5.452