摘要: |
Waste nitrous oxide (N2O) was utilized as an oxidant for ethane oxydehydrogenation reaction at the temperature range from 450 degrees C to 700 degrees C over the mesoporous Cr/Al2O3 catalyst synthesized via the one-pot evaporation-induced self-assembly (EISA) method. The catalyst was characterized by X-ray diffraction, transmission electron microscopy, and nitrogen adsorption-desorption analysis. The obtained mesoporous material with favorable textural property and advantageous thermal stability was investigated as the catalyst for ethane oxydehydrogenation. It was found that the utilization of N2O as an oxidant for the oxydehydrogenation reaction of ethane resulted in simultaneous and complete N2O abatement. Moreover, the catalytic conversion of C2H6 to C2H4 was increased from 18% to 43% as the temperature increased from 450 degrees C to 700 degrees C. The increased N2O concentration from 5 vol % to 20 vol % resulted in an increased ethane conversion but decreased ethylene selectivity because the nonselective reactions occurred. Ethane was converted into ethylene with approximately 51% selectivity and 22% yield at 700 degrees C and N2O concentration of 10%. After a catalytic steady state was reached, no obvious decline was observed during a 15 h evaluation period. |