摘要: |
The development of abundantly available base metal catalysts for organic transformations remains an important goal of chemical research. Herein, we report the first facile fabrication of active, inexpensive, and reusable cobalt nanoparticles (NPs) coated with a N,P-codoped carbon shell derived from naturally renewable biomass and earth-abundant, low-cost cobalt salt and PPh3. The entire process is operationally simple, straightforward, cost-effective and environmentally benign and can be used in mass production for practical application. The resultant catalysts allow for highly efficient and selective transfer hydrogenation of functionalized nitroarenes to the corresponding anilines using formic acid or ammonium formate as the hydrogen donor. Uniformly incorporated N and P into the carbon lattices exhibited synergistic effects with the encapsulated Co NPs to engineer the structure and composition of the catalyst, thereby substantially boosting the catalytic efficiency. The most active catalyst Co@ NPC-800 exhibited outstanding activity and exclusive selectivity for the reduction of functionalized nitroarenes to anilines, especially those decorated with readily reducible functional groups. The catalyst demonstrated high stability and can be easily separated by using an external magnet for successive reuses without significant loss in both activity and selectivity. |