论文
Compatible solutes profiling and carbohydrate feedstock from diversified cyanobacteria
发表年度: 2019
卷: 43
页: -
摘要: Cyanobacteria are promising cell factories for producing high-value bioproducts. They accumulate low molecular mass organic molecules under salinity stress conditions, which are known as compatible solutes, e.g. sucrose, trehalose, and glucosylglycerol (GG). The physiological properties of compatible solutes sort them as the potential bioproducts for applications in the field of health, pharmacy, and cosmetic sectors. During last few decades, mostly model cyanobacterial strains (unicellular from freshwater and marine habitats) have been targeted for the biochemical and molecular characterization of compatible solutes accumulation, while, the study on other cyanobacteria from extreme/stressful habitats are scanty. The advantage for selecting multicellular cyanobacteria in the present study is their easier harvesting mode over unicellular strains which are one of the primary concerns for the cost-effective production of desired products at pilot scale. Therefore, five cyanobacterial strains with diverse morphotypes belonging to subsection I (Unicellular), II (Baeocytous), III (Filamentous), and V (Ramified) isolated from extreme/stressful habitats (sewage pond and hot spring including freshwater strain as a reference) were screened for salt tolerance, compatible solutes profiling, and sugar feedstock production. High GG, sucrose, and glycogen production were found in Leptolyngbya sp. PCC 8913, Chroogloeocystis siderophila NIES-1031 and Fischerella major NIES-592, respectively. Under salt stress, Leptolyngbya sp. PCC 8913 showed a GG production of 101 +/- 12 mg/L/OD730, which is significantly higher than that of the model strain Synechocystis sp. PCC 6803. Fischerella major NIES-592 and Oscillatoria laetevirens NIES-31 were identified as novel trehalose-producing cyanobacteria. The key genes involved in production of compatible solutes among these cyanobacteria were also studied. Thus, the results not only displayed the potential cyanobacteria for production of GG, sucrose, trehalose and glycogen but also address the metabolic pathways for the compatible solutes biosynthesis in diversified cyanobacteria, which can be further targeted for the in-depth study to enhance the production using molecular approaches.
刊物名称: ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS
影响因子: 3.723