论文
Noncloggingly Sieving Sub-6 nm Nanoparticles of Noble Metals into Conductive Mesoporous Foams with Biological Nanofibrils
发表年度: 2020
期: 1
卷: 14
页: 828-834
摘要: Porous metal foams have been one of the most sought-after materials owing to their combination of bulk metallic characteristics (e.g., thermal/electrical conductivity and ductility) and nanometric size-effect properties (e.g., catalytic reactivity, plasmonic behavior, and high surface area). Traditional sol-gel approaches, though one of the most frequently used method to produce mesoporous metal foams, were hindered for scalable production and wide applications because of its tedious multistep procedure, time-consuming gelation time, and polydisperse pore sizes. Herein, by depositing biological nanofibrils (chitin, cellulose, and silk) on commercial filtration membranes, we report a facile approach to sieve and recycle sub-6 nm nanoparticles of noble metals (Au and Pt) via nonclogging filtration into three-dimensional (3D) networks with interconnected mesopores. The porous networks could withstand air-drying, in contrast to freezing/supercritical drying conventionally used for mesoporous foams preparation. This approach was also applicable to both mesoporous monometallic (Au, Pt) and bimetallic (Au-Pt) foams. Moreover, the resultant mesoporous metallic foams show high porosity up to 90%, homogeneous mesoporous structure, and metallic conductivity up to 10(4) S/cm. Thus, this rapid and scalable sieving procedure not only offers a possibility of sieving noncloggingly for efficient recovery of metal nanoparticles but also starts a pathway to produce conductive and flexible mesoporous foams applicable in broad fields such as continuous flow catalysis and smart actuating.
刊物名称: ACS NANO
影响因子: 13.903